9.3 - The P-Value Approach | STAT 415 (2024)

Example 9-4 Section

9.3 - The P-Value Approach | STAT 415 (1)

Up until now, we have used the critical region approach in conducting our hypothesis tests. Now, let's take a look at an example in which we use what is called the P-value approach.

Among patients with lung cancer, usually, 90% or more die within three years. As a result of new forms of treatment, it is felt that this rate has been reduced. In a recent study of n = 150 lung cancer patients, y = 128 died within three years. Is there sufficient evidence at the \(\alpha = 0.05\) level, say, to conclude that the death rate due to lung cancer has been reduced?

Answer

The sample proportion is:

\(\hat{p}=\dfrac{128}{150}=0.853\)

The null and alternative hypotheses are:

\(H_0 \colon p = 0.90\) and \(H_A \colon p < 0.90\)

The test statistic is, therefore:

\(Z=\dfrac{\hat{p}-p_0}{\sqrt{\dfrac{p_0(1-p_0)}{n}}}=\dfrac{0.853-0.90}{\sqrt{\dfrac{0.90(0.10)}{150}}}=-1.92\)

And, the rejection region is:

Since the test statistic Z = −1.92 < −1.645, we reject the null hypothesis. There is sufficient evidence at the \(\alpha = 0.05\) level to conclude that the rate has been reduced.

Example 9-4 (continued) Section

9.3 - The P-Value Approach | STAT 415 (2)

What if we set the significance level \(\alpha\) = P(Type I Error) to 0.01? Is there still sufficient evidence to conclude that the death rate due to lung cancer has been reduced?

Answer

In this case, with \(\alpha = 0.01\), the rejection region is Z ≤ −2.33. That is, we reject if the test statistic falls in the rejection region defined by Z ≤ −2.33:

Because the test statistic Z = −1.92 > −2.33, we do not reject the null hypothesis. There is insufficient evidence at the \(\alpha = 0.01\) level to conclude that the rate has been reduced.

Example 9-4 (continued) Section

9.3 - The P-Value Approach | STAT 415 (3)

In the first part of this example, we rejected the null hypothesis when \(\alpha = 0.05\). And, in the second part of this example, we failed to reject the null hypothesis when \(\alpha = 0.01\). There must be some level of \(\alpha\), then, in which we cross the threshold from rejecting to not rejecting the null hypothesis. What is the smallest \(\alpha \text{ -level}\) that would still cause us to reject the null hypothesis?

Answer

We would, of course, reject any time the critical value was smaller than our test statistic −1.92:

That is, we would reject if the critical value were −1.645, −1.83, and −1.92. But, we wouldn't reject if the critical value were −1.93. The \(\alpha \text{ -level}\) associated with the test statistic −1.92 is called the P-value. It is the smallest \(\alpha \text{ -level}\) that would lead to rejection. In this case, the P-value is:

P(Z < −1.92) = 0.0274

So far, all of the examples we've considered have involved a one-tailed hypothesis test in which the alternative hypothesis involved either a less than (<) or a greater than (>) sign. What happens if we weren't sure of the direction in which the proportion could deviate from the hypothesized null value? That is, what if the alternative hypothesis involved a not-equal sign (≠)? Let's take a look at an example.

Example 9-4 (continued) Section

9.3 - The P-Value Approach | STAT 415 (4)

What if we wanted to perform a "two-tailed" test? That is, what if we wanted to test:

\(H_0 \colon p = 0.90\) versus \(H_A \colon p \ne 0.90\)

at the \(\alpha = 0.05\) level?

Answer

Let's first consider the critical value approach. If we allow for the possibility that the sample proportion could either prove to be too large or too small, then we need to specify a threshold value, that is, a critical value, in each tail of the distribution. In this case, we divide the "significance level" \(\alpha\)by 2 to get \(\alpha/2\):

That is, our rejection rule is that we should reject the null hypothesis \(H_0 \text{ if } Z ≥ 1.96\) or we should reject the null hypothesis \(H_0 \text{ if } Z ≤ −1.96\). Alternatively, we can write that we should reject the null hypothesis \(H_0 \text{ if } |Z| ≥ 1.96\). Because our test statistic is −1.92, we just barely fail to reject the null hypothesis, because 1.92 < 1.96. In this case, we would say that there is insufficient evidence at the \(\alpha = 0.05\) level to conclude that the sample proportion differs significantly from 0.90.

Now for the P-value approach. Again, needing to allow for the possibility that the sample proportion is either too large or too small, we multiply the P-value we obtain for the one-tailed test by 2:

That is, the P-value is:

\(P=P(|Z|\geq 1.92)=P(Z>1.92 \text{ or } Z<-1.92)=2 \times 0.0274=0.055\)

Because the P-value 0.055 is (just barely) greater than the significance level \(\alpha = 0.05\), we barely fail to reject the null hypothesis. Again, we would say that there is insufficient evidence at the \(\alpha = 0.05\) level to conclude that the sample proportion differs significantly from 0.90.

Let's close this example by formalizing the definition of a P-value, as well as summarizing the P-value approach to conducting a hypothesis test.

P-Value

The P-value is the smallest significance level \(\alpha\) that leads us to reject the null hypothesis.

Alternatively (and the way I prefer to think of P-values), the P-value is the probability that we'd observe a more extreme statistic than we did if the null hypothesis were true.

If the P-value is small, that is, if \(P ≤ \alpha\), then we reject the null hypothesis \(H_0\).

Note! Section

9.3 - The P-Value Approach | STAT 415 (5)

By the way, to test \(H_0 \colon p = p_0\), some statisticians will use the test statistic:

\(Z=\dfrac{\hat{p}-p_0}{\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}}\)

rather than the one we've been using:

\(Z=\dfrac{\hat{p}-p_0}{\sqrt{\dfrac{p_0(1-p_0)}{n}}}\)

One advantage of doing so is that the interpretation of the confidence interval — does it contain \(p_0\)? — is always consistent with the hypothesis test decision, as illustrated here:

Answer

For the sake of ease, let:

\(se(\hat{p})=\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\)

Two-tailed test. In this case, the critical region approach tells us to reject the null hypothesis \(H_0 \colon p = p_0\) against the alternative hypothesis \(H_A \colon p \ne p_0\):

if \(Z=\dfrac{\hat{p}-p_0}{se(\hat{p})} \geq z_{\alpha/2}\) or if \(Z=\dfrac{\hat{p}-p_0}{se(\hat{p})} \leq -z_{\alpha/2}\)

which is equivalent to rejecting the null hypothesis:

if \(\hat{p}-p_0 \geq z_{\alpha/2}se(\hat{p})\) or if \(\hat{p}-p_0 \leq -z_{\alpha/2}se(\hat{p})\)

which is equivalent to rejecting the null hypothesis:

if \(p_0 \geq \hat{p}+z_{\alpha/2}se(\hat{p})\) or if \(p_0 \leq \hat{p}-z_{\alpha/2}se(\hat{p})\)

That's the same as saying that we should reject the null hypothesis \(H_0 \text{ if } p_0\) is not in the \(\left(1-\alpha\right)100\%\) confidence interval!

Left-tailed test. In this case, the critical region approach tells us to reject the null hypothesis \(H_0 \colon p = p_0\) against the alternative hypothesis \(H_A \colon p < p_0\):

if \(Z=\dfrac{\hat{p}-p_0}{se(\hat{p})} \leq -z_{\alpha}\)

which is equivalent to rejecting the null hypothesis:

if \(\hat{p}-p_0 \leq -z_{\alpha}se(\hat{p})\)

which is equivalent to rejecting the null hypothesis:

if \(p_0 \geq \hat{p}+z_{\alpha}se(\hat{p})\)

That's the same as saying that we should reject the null hypothesis \(H_0 \text{ if } p_0\) is not in the upper \(\left(1-\alpha\right)100\%\) confidence interval:

\((0,\hat{p}+z_{\alpha}se(\hat{p}))\)

9.3 - The P-Value Approach | STAT 415 (2024)

FAQs

How do you find the p-value using the p-value approach? ›

The p-value is calculated using the sampling distribution of the test statistic under the null hypothesis, the sample data, and the type of test being done (lower-tailed test, upper-tailed test, or two-sided test). The p-value for: a lower-tailed test is specified by: p-value = P(TS ts | H 0 is true) = cdf(ts)

How do you interpret the result using the p-value approach? ›

A p-value measures the probability of obtaining the observed results, assuming that the null hypothesis is true. The lower the p-value, the greater the statistical significance of the observed difference. A p-value of 0.05 or lower is generally considered statistically significant.

What does p-value 0.63 mean? ›

P value is NOT "the probability that the obtained result is due to chance alone." A P value of 0.63 means that there is a 63% chance that if you accept the alternate hypothesis (Ha; that there is a difference) you will be mistakenly rejecting the null hypothesis (Ho; no difference).

Is p-value 0.055 significant? ›

Usually statistical significance in this context is defined as a pre-set P-value <0.05. A p-value of 0.055 is considered not statistically significant.

What is an example of a p-value? ›

P-values are expressed as decimals and can be converted into percentage. For example, a p-value of 0.0237 is 2.37%, which means there's a 2.37% chance of your results being random or having happened by chance. The smaller the P-value, the more significant your results are.

Is the p-value the calculated value? ›

The P value, or calculated probability, is the probability of finding the observed, or more extreme, results when the null hypothesis (H 0) of a study question is true – the definition of 'extreme' depends on how the hypothesis is being tested.

What does p-value of 0.38 mean? ›

This means it is the opposite: having a p of 0.38% as you report doesn't mean you have to keep the null hypothesis because your result is so unlikely but it means that you can discard the null hypothesis because your data was very unlikely a randomly drawn sample from a population with a mean of 3 (i.e., your data ...

Is 0.6 a good p-value? ›

'P=0.06' and 'P=0.6' can both get reported as 'P=NS', but 0.06 is only just above the conventional cut-off of 0.05 and indicates that there is some evidence for an effect, albeit rather weak evidence. A P value equal to 0.6, which is ten times bigger, indicates that there is very little evidence indeed.

Is p-value 0.75 significant? ›

If the p-value is larger than 0.05, we cannot conclude that a significant difference exists. That's pretty straightforward, right? Below 0.05, significant. Over 0.05, not significant.

Is p-value of 0.49 significant? ›

Since the P-value is a probability, its possible values range from 0 to 1. A low P-value, meaning a P-value between 0 and 0.49, indicates that it is unlikely that the results of an experiment occurred due to random chance.

What is a bad p-value? ›

If the p-value is 0.05 or lower, the result is trumpeted as significant, but if it is higher than 0.05, the result is non-significant and tends to be passed over in silence.

Is p-value 0.19 significant? ›

A P value of 0.19 indicates that the probability of observing a 4- day difference in treatment duration between the 2 bracket systems, when in reality no difference exists (H0 is true), is rather high (about 20%), and therefore we accept the H0.

What is the p-value approach in chi-square? ›

The P-value is the area under the density curve of this chi-square distribution to the right of the value of the test statistic. The final step of the chi-square test of significance is to determine if the value of the chi-square test statistic is large enough to reject the null hypothesis.

How to calculate p-value from chi-square by hand? ›

The p-value is equal to one minus the area under the curve corresponding to the chi-square test statistic. So, the p-value can be computed by subtracting 0.90 from 1: P = 1 − 0.90 = 0.10 .

What is the formula for p probability? ›

P(A/B) is known as conditional probability and it means the probability of event A that depends on another event B and is read as "probability of A given B". It says P(A/B) = P(A∩B) / P(B). It is also known as "the probability of A given B". P(A/B) Formula is used to find this conditional probability quickly.

References

Top Articles
Latest Posts
Article information

Author: Tuan Roob DDS

Last Updated:

Views: 6085

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Tuan Roob DDS

Birthday: 1999-11-20

Address: Suite 592 642 Pfannerstill Island, South Keila, LA 74970-3076

Phone: +9617721773649

Job: Marketing Producer

Hobby: Skydiving, Flag Football, Knitting, Running, Lego building, Hunting, Juggling

Introduction: My name is Tuan Roob DDS, I am a friendly, good, energetic, faithful, fantastic, gentle, enchanting person who loves writing and wants to share my knowledge and understanding with you.